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Localization transition in incommensurate non-Hermitian systems
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A class of one-dimensional lattice models with an incommensurate complex potentialV(u)52@l r cos(u)
1ili sin(u)# is found to exhibit a localization transition atul r u1ul i u51. This transition from extended to
localized states manifests itself in the behavior of the complex eigenspectum. In the extended phase, states with
real eigenenergies have a finite measure, and this measure goes to zero in the localized phase. Furthermore, all
extended states exhibit real spectra providedul r u>ul i u. Another interesting feature of the system is the fact
that the imaginary part of the spectrum is sensitive to the boundary conditionsonly at the onset to localization.
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Incommensurate systems such as the Harper equatio@1#
provide an important class of models exhibiting both e
tended and localized states in one dimension. In this pa
we study the localization transition in systems with comp
ing length scales where the underlying potential is comp
The systems under investigation are described by the cla
lattice tight binding models~TBM’s!,

cn111cn2112@l r cos~un!1 il i sin~un!#cn5Ecn ,
~1!

whereun52psn1a. Herea is a constant phase factor an
s is an irrational number, which we choose to be the gold
mean. This lattice model describes a system where the pe
of the potential is incommensurate with the periodicity of t
lattice. Forl i50, this reduces to a Harper equation, whi
exhibits a localization transition atul r u51. Recently, non-
Hermitian systems have been the subject of various theo
ical @2–5# and experimental@6,7# studies. In certain one
dimensional random systems, where all states for
Hermitian problem are localized, the addition of a comp
vector potential has been shown@3# to result in a delocaliza-
tion of states, accompanied by the eigenvalues becom
complex. The system we investigate exhibits both exten
and localized states, and hence facilitates a study of n
Hermiticity in both these phases. By investigating how t
non-Hermiticity alters the localization transition as well
the eigenenergies in the complex plane, we are able to s
the correlation between the nature of the eigenspectrum
the transport characteristics of the model. It is implicit in t
literature@8# that non-Hermiticity corresponds to dissipatio
and decoherence, and as such we arguably explore the
pact of these effects on the localization transition. Two
teresting limits that we explore in detail are the case
purely imaginary potentiall r50, and the case where th
real and imaginary parts are equal (l r5l i), which can be
described as the strong and weak dissipative limits, res
tively. Further, we also study the case of non-Hermitian
tice models with real spectra. This is an interesting proble
since certain complex potentials in quantum mechanics
known to have real spectra provided the potentials exh
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parity and time reversal~PT! symmetry@2#. Here we seek the
criterion for a real spectrum in non-Hermitian lattice mode
exhibiting localization transitions.

We study periodic boundary conditions~PBC’s!, antiperi-
odic boundary conditions~APBC’s!, and free boundary con
ditions to investigate the sensitivity to the boundary effec
As expected, only extended states are sensitive to the bo
ary conditions, and this sensitivity to the boundary effe
can be used to distinguish extended and localized states
useDEr , which is the real part of difference in the eigene
ergies between PBC’s and APBC’s, summed over all sta
to distinguish extended and localized states: The exten
states are characterized by a finite value ofDEr while in the
localized phaseDEr50, reflecting its insensitivity to
changes at the boundaries. Our detailed numerical st
based on sensitivity to various boundary conditions a
wave functions, shows that the non-Hermitian system exh
its a localization transition atul r u1ul i u51. This implies that
the Hermitian and non-Hermitian parts of the potential ca
the same weight in determining the transport characteris
of the model. Figure 1 showsDEr and DEi for the weak
dissipation limitl r5l i5l, which is discussed in detail be
low. A rather intriguing result is that the imaginary part
the DE is sensitive to the boundary effects only at the on
to the localization transition. This result, found to be true
other parameter values, implies that the lifetime of the me
stable system depends upon the boundary conditions on
the transition point.

In order to explore the relationship between the locali
tion character and the behavior of the eigenenergies, we h
extensively studied the eigenspectrum in the two-param
(l r ,l i) space. Figures 2–4 show the variation in eigenen
gies with the parameters for some special cases. These
ies suggest that it is the localized phase of the non-Hermi
lattice model@Eq. ~1!# that is characterized by a comple
spectrum, in contrast to previous results@3# where the spectra
become complex when the localized states become delo
ized. In the extended phase, the spectrum is real prov
ul r u>ul i . Furthermore, forul r u,ul i u, a number of extended
states with real eigenenergies have finite measures. Th
fore, the fraction of states with real spectra is finite in e
tended phase, and vanishes in localized phase. This prov
a new order parameter for the localization transition,
shown in Fig. 5.
©2001 The American Physical Society22-1
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FIG. 1. ~a! and ~b! show DEr and DEi vs l
[l r5l i for s5377 and 610, respectively.DEi

appears to be related to the derivative ofDEr .
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In contrast with earlier results@3#, where a non-Hermitian
vector potential was found to delocalize the localized sta
of the random system, the addition of a non-Hermitian p
tential to a Harper model which exhibits both extended a
localized states does not alter the localization character o
system. Furthermore, our results associate a complex s
trum with the localized states, in marked contrast with
earlier result where a complex spectrum implied delocali
tion. This is one of the central results of our analysis.
implies that previous results relating complex eigenval
and delocalization must be understood as specific to the
of system investigated, namely, a random system with a n
Hermitian vector potential, and may not describe the gen
property of non-Hermitian systems exhibiting localization
03622
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We now discuss two limiting cases: the strong and we
dissipation limits. The first case corresponds to a pur
imaginary potential (l r50). It is interesting to note that a
model with a purely imaginary potential exhibits a duali
very similar to that of the purely Hermitian problem@9#.
Under the Fourier transformation~FT!

cn5( eiunmfm , ~2!

the TBM @Eq. ~1!# with l[l i reduces to

fm111fm211
2i

~l!
cos~um!fm52

iE

l
fm . ~3!
se
c-
n,

he
a-
FIG. 2. ~a! and ~b! show the variation in ei-
genvalues as a function ofl[l r5l i for PBC for
s534 and 55, respectively. The extended pha
of this non-Hermitian system exhibits a real spe
trum. Note that in contrast to the Harper equatio
there is a bending and merging of levels at t
transition. Furthermore, unlike the Harper equ
tion, the spectrum is not symmetric aboutl50.
2-2
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FIG. 3. ~a! and ~b! show the variation in ei-
genvalues as a function ofl[l r for fixed l i

50.25 at PBC’s fors534 and 55, respectively
In the extended phase all states have real eigen
ergies providedl r>l i .
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Comparing this with the original model, we obtain

E* ~l!52
i

l
ES 1

l D . ~4!

This implies that the real and imaginary parts of the eigen
ergies are related asEr(l)5(1/l)Ei(1/l). Therefore, the
case of the purely imaginary potential has the interes
property that the localization transition interchanges the
and imaginary parts of the spectrum. At the onset to loc
ization (l51) the model is self-dual, withEr5Ei . Figure 6
shows eigenenergies at some values of the parameter i
extended phase. Due to duality these figures also show
spectrum in the localized phase with the interchange ofEr
and Ei . At the onset of localization, the spectrum wi
03622
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Er5Ei resembles that of the Harper equation. It is intrigui
that even in this strong dissipative limit, extended states w
real spectra have a finite measure. In this lattice model w
competing length scales, it therefore appears that exten
states are essential for obtaining real eigenenergies. This
be compared with earlier formal results, where PT symme
was a key for obtaining real spectrum for complex potentia

We next discuss the weak dissipation limit,l r5l i[l,
described by the following TBM:

cn111cn2112leiuncn5Ecn. ~5!

As shown in Fig. 1, the system exhibits a localization tra
sition at l5.5. The localization threshold is half of that o
the Harper equation, because both the real and imagin
ly
FIG. 4. Same as Figs. 2 and 3 for the pure
imaginary potentiall r50.
2-3
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FIG. 5. Fraction of states with real eigenene
gies as a function ofl for l i50.25 ~a! and l r

50 ~b!. Heres5233 and 377. The steps seen
this plot are due to finite size effects.
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parts of the potential contributes toward localization. In t
extended phase, the spectrum is found to be real and id
cal to that of thel50 limit, namely, E52 cos(un). This
explains the constant value ofDEr in the extended phase, a
seen in Fig. 1. In the localized phase the eigenenergies
complex, and appear to be described by the following
pressions:

Er52 cosh~g!cos~un!, ~6!

Ei52 sinh~g!sin~un!. ~7!

Hereg is the inverse localization length of the system, whi
is found to be equal to the corresponding value for
Harper equationg5 log(2l). In the limit l→`, the eigenen-
03622
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ergies lie on a circle. Therefore, the localized phase is m
stable, with the lifetime determined by the localizatio
length.

The FT of model~5! can be analyzed further as transfo
mation ~2! reduces the tridiagonal matrix to the followin
triangular matrix:

2 cos~um!fm12lfm215Efm . ~8!

With PBC’s, the eigenvalues of this triangular matrix are t
solution of the following algebraic equation:

~2l!N5) @E22 cos~un!#. ~9!
i-
e-
e

FIG. 6. Spectrum for different values ofl for
s555 and 89, respectively, for a purely imag
nary potential. The three vertical columns corr
spond tol50.5, 0.75, and 1, respectively. Th
three rows show~a! Er vs Ei ~b! Er vs n and~c!
Ei vs n ~sorted independently of the real part!.
2-4
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FIG. 7. ~a! and ~b! show the real and imagi-
nary parts of the spectrum for the model d
scribed by Eq.~10! with g50.2 ands5144 and
233, respectively. In contrast to the case whe
non-Hermiticity appears in the diagonal part, th
localized phase is characterized by real eigenv
ues.
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For l,0.5, as N→`, we obtain E52 cos(un), which is
found to be identical with numerically obtained spectrum
model ~5!. For l.0.5, the FT of the model allows real so
lutions: E52 cos(un)12l. These real energies were n
found to be the solutions of model~5!. The FT of the model
also exhibits complex solutions. It is easy to see that in
l→` limit, the algebraic equation~9! has a solution where
E/(2l) lies on the unit circle, which is also the solution fo
model ~5!. This indicates a deep relationship between
spectra of model~5! and its FT — the details have so fa
proven elusive.

Another aspect of model~5! is that at the onset to local
ization l50.5, the FT of the model describes the stro
coupling limit of the fluctuations of the Harper equation on
the exponentially decaying part is factored out@10#. This
also describes the Ising model at the onset to long ra
order forE50 @12#. This limit has been shown to be unive
sal using renormalization methods@10# as well as more rig-
orous analytic tools@11#. This result therefore establishes th
multifractal character of the FT of the wave function at t
onset of the localization transition. It should be noted that
eigenspectrum remains continuous at the localization tra
tion, in contrast to the Harper equation, which is charac
ized by a singular-continuous spectrum at the transiti
Therefore, thel r5l i limit of model ~1! provides a class o
incommensurate systems where the eigenspectrum is ga
and remains continuous except in the localized phase.

In contrast with earlier results on localization in no
Hermitian systems@3#, the system studied here associate
complex spectrum with the localized phase. This differen
appears to be related to the fact that the non-Hermiti
appears in the diagonal part of the potential while the n
Hermitian vector potential studied earlier@3# affects the off-
diagonal part of the lattice model. To confirm this view, w
studied a Harper equation with a non-Hermitian off-diago
term:
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egcn111e2gcn2112l cos~un!cn5Ecn . ~10!

The parameterg is related to the complex vector potentia
As shown in Fig. 7, the localized phase of this model
associated with the real eigenspectrum, as was the cas
the random potential studied in Ref.@4#.

In summary, the localization transition of the Harp
equation remains unaffected by the non-Hermitian pertur
tion. The correlation between the nature of eigenstates
the behavior of the energy spectrum in the complex pla
depends upon whether the non-Hermiticity appears in
diagonal or off-diagonal part of the model. For a latti
model with a non-Hermitian diagonal potential, the case t
has been studied in detail here, a weakly dissipative sys
is characterized by real eigenenergies in extended phase
the strength of the non-Hermitian potential increases,
number of extended states with real eigenenergies decre
approaching zero at the onset to localization. In the locali
phase, states with complex spectra have a full measure.
localized phase is metastable, with state lifetimes determi
by the localization length. The question of real eigenvalue
determined by both the transport character of the state
well as the amount of dissipation. An interesting result is t
extended states with real eigenenergies always have a
tive measure, while localized states with real energies ha
zero measure. Therefore, the measure of real eigenene
provides an order parameter for the localizatio
delocalization transition.

One future aspect of study is the extension of these res
to a classical nonintegrable~perhaps a kicked! system, thus
investigating the effect of dissipation on nonintegrable s
tems exhibiting localization. Furthermore, it should be no
that Eq. ~1! is the fermion representation of isotropicXY
spin-12 chain in a complex magnetic field which is spatial
2-5
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modulating@12#. The consequences of a localization tran
tion with a complex spectrum on the magnetic properties
the system is another interesting open question. Finall
localization transition in incommensurate tight-binding la
tice models corresponds to a transition to strange noncha
attractors~SNA’s! @13# in quasiperiodically driven maps
J.
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Therefore, the results of this paper may have important
plications in the study of SNA’s in complex maps.
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